
On the residual entropy of the one-dimensional Ising chain with competing interactions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1982 J. Phys. A: Math. Gen. 15 L723

(http://iopscience.iop.org/0305-4470/15/12/012)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 15:05

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/15/12
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 15 (1982) L723-L727. Printed in Great Britain 

LETTER TO THE EDITOR 

On the residual entropy of the one-dimensional Ising chain 
with competing interactions 

D HajdukoviC and S MiloieviC 
Department of Physics and Meteorology, Faculty of Natural and Mathematical Sciences, 
Belgrade, PO Box 550, Yugoslavia 

Received 17 September 1982 

Abstract. We establish explicit relations between the residual entropy of the one- 
dimensional Ising chain with a nearest-neighbour ferromagnetic and & th-neighbour anti- 
ferromagnetic interaction, and the residual entropies of the one-dimensional king chain 
with many-neighboured antiferromagnetic interactions in the corresponding maximum 
critical fields. The obtained results are, in particular, relevant to the chains that appear 
in the axial next-nearest-neighbour Ising model. 

The axial next-nearest-neighbour Ising (or ANNNI) model in d dimensions consists of 
(d - 1)- dimensional layers of spins with nearest-neighbour ferromagnetic coupling, 
Jo > 0, within layers but competing ferromagnetic, J 1 ,  and antiferromagnetic, J2  < 0, 
first- and second-neighbour axial coupling between layers (Fisher and Selke 198 1). 
In other words, the ANNNI model consists of one-dimensional Ising chains with 
ferromagnetic inter-chain interaction and competing intra-chain interactions. The 
chains are stretched along the spatial axis that is perpendicular to the ferromagnetic 
layers. For - J 2 / J 1  = $, such a chain has an infinitely degenerate ground state accom- 
panied by a non-zero residual entropy per spin. This makes the phase diagram of the 
ANNNI model appear very complex, and interesting, close to the multiphase point 
(T = 0, - J 2 / J 1  = i). Therefore, Redner (1981) was stimulated to study a one- 
dimensional king chain with a nearest-neighbour ferromagnetic interaction J 1  and a 
competing k th-neighbour antiferromagnetic interaction Jkr in a zero field. He found 
that such a chain (hereafter we shall call it the (J1 ,  J k )  chain) has a highly degenerate 
ground state when - Jk /J1  = l/k. In this letter we demonstrate that the residual entropy 
of the (J1 ,  J k )  chain in a zero field is equal to the residual entropy of the Ising chain 
with a many-neighboured antiferromagnetic interaction of range (k - 1) in the corres- 
ponding maximum critical field (HajdukoviC and MiloSeviC 1982), whereas the 
residual entropy of the ( J 1 ,  Jk) chain in the critical field H = -2Jk - 2 J l / k  is equal to 
the ground state degeneracy of the Ising chain with an antiferromagnetic interaction 
of range (2k - 1) in the corresponding maximum critical field. 

In order to verify the statement formulated above, we derive formulae for the 
ground state degeneracy of the (J1 ,  J k )  chain in a form that is suitable for comparison 
with the results recently obtained for the antiferromagnetic Ising chains (HajdukoviC 
and MiloSeviE 1982). Thus we study the Hamiltonian 
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where Si is the conventional Ising spin variable (Si = * l ) ,  while J1 and Jk respectively 
represent the nearest-neighbour ferromagnetic and k th-neighbour antiferromagnetic 
coupling (J1  > 0, Jk < 0). The applied field is positive (H > 0), and it defines the positive 
(upward) direction of spins. Now we introduce new variables: n ( J )  number of spins 
turned down, nl(-) number of negative terms in the first sum of ( l ) ,  and nk(- )  
number of negative terms in the second sum of ( 1 ) .  Hence, assuming periodic boundary 
conditions, the Hamiltonian can be written in the form 

H = -N(J1  f Jk + H )  + 2Jlnl (  - ) + 2Jknk ( - )  f 2 H n  (i), ( 2 )  

H = constant + Y + 2 (3) 

Y = 2Jln 1( - ) + 2Jknk ( - ), ( 4 )  

2 = 2 H n  (J). ( 5 )  

or 

where 

Here we observe that in a zero field it is the minimum of the function Y which 
determines the ground state of the system, whereas in a non-zero field the ground 
state is determined by a minimum of the sum Y +Z. In both cases we adopt n ( i )  as 
a basic variable. It varies from zero to N .  

We start our discussion with the H = 0 case and with the configuration n(&)  = 0. 
The first spin turned 

( 6 )  

brings about the following change in Y :  

A Y1= 451 + 4Jk. 

As we are looking for the largest possible decrement of Y for a given increment 
A n ( J ) ,  we assume that the second spin turned clings to the first one, and so on up 
to the kth spin turned down. In this way the change of the first term in Y stays fixed, 
while there appears a decreasing sequence of total changes 

A Yi = 4J1+ 4uk,  i = 1 , 2  , . . . ,  k .  (7) 

For any additional number of spins which are turned J (as long as N - n (4) 3 k )  and 
stuck to the domain of the first k of them, the change in Y is the same, that is to say 
A Y k .  If A Y k  is positive (i.e. - J k / J 1  < l / k )  then all A Y i  are positive as well, and there 
is no decreasing of Y by turning spins J. The ground state is ferromagnetic. On the 
other hand, if any of A Y i  is negative, then A Y k  is the most negative entry in the 
sequence (7), and the ground state is formed of domains of k spins. The domains are 
alternately aligned up and down. Following Redner ( 1 9 8 1 )  we denote this phase as 
( k ) .  It occurs when -Jk/J1> l/k. At -Jk/J1= l / k  the state n ( J )  = 0 is not affected 
by the appearance of a domain of k, or more, spins turned J, and thus the ground 
state degenerates into all possible sequences of domains such that each domain consists 
of at least k aligned spins and is followed by a domain of at least k spins aligned in 
the opposite direction. 

In a non-zero field, functions Y and 2 may have different effects in achieving a 
minimum of 8. When -Jk/J1  < l / k  both functions increase with increasing n ( l ) ,  and 
the ground state is at n (4) = 0 (a ferromagnetic ground state). However, Y decreases 
and 2 increases, with increasing n ( l ) ,  when Jk/JI < l / k .  Then, if we expect a 
degenerate ground state, we should look for those values of H which compensate 
A Y i ,  yielding AZi = - A Y ( ,  and hence A% = 0 when A n ( J ) > O .  For all values of H 
such that 

H = - 2 J k - 2 J i / k  (8) 
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the equality = -AYk holds, and 2 does not change (with respect to the state 
n (1) = 0) if there appears any sequence of domains such that each domain composed 
of spins aligned .1 has k elements and is followed by a domain composed of k ,  or 
more, spins aligned r. If there appeared a domain with n (4) > k (or n (i) < k ) ,  when 
the field (8) is applied, the corresponding AY would be smaller than A 2  and A would 
be positive. On the other hand, if a field smaller than (8) is applied, lAYkl will be 
greater than AZk and the ground state will be of the (k) type, whereas in the case of 
a field greater than (8), IAYkl will be smaller than AZ and the ground state will be 
ferromagnetic. Therefore, equation (8) defines a line in the plane (-Jk/J1, H / J l ) .  The 
line passes through the multiphase point ( l / k ,  0). For any point that lies above this 
line the ground state of a system described by ( 1 )  is ferromagnetic. For points below 
the line the ground state is of the ( k )  type. On the line, the ground state is highly 
degenerate. 

We first calculate the ground state degeneracy in the case - J k / J 1  = l / k  and H = 0. 
This degeneracy is a sum of products of two binomial coefficients. The first binomial 
coefficient represents the number of ways in which a group of n (J) spins can be divided 
into m domains each consisting of at least k elements. The second binomial coefficient 
represents the number of ways in which m domains of spins turned 4 can break the 
group of remaining N -n (J . )  spins so that there is no broken part with less than k 
elements and no touching of the 4 domains. Hence the ground state degeneracy is 
given by 

where [n ( . J ) / k ]  is the integral part of n ( J ) / k ,  while the prime on the second summation 
sign means that m must not be greater than ( N - n ( J ) ) / k ,  i.e. no domain of spins 
pointed up may have less than k elements. It suffices to find the largest term in the 
sum ( 9 )  so as to obtain the residual entropy in the thermodynamic limit 

CT = lim ( 1 / N )  In P. (10) N+W 

The largest term is determined by n (4) = N / 2  and m = x N / 2 ,  where x is the smallest 
positive root of the equation 

(1 - kX)k = x ( l -  kx + x ) ~ - ’ ,  

(+ = ln{[l -(k - l ) x ] / ( l -  kx ) } .  

( 1 1 )  

( 12 )  
One can verify numerically for particular values of k, and analytically for arbitrary k ,  
that formulae ( 1 1 )  and (12 )  yield the same entropies found by Redner (1981) .  

The ground state degeneracy in the critical field (8) is a sum of the degeneracy 
elements, each one being the number of ways in which a group of m domains with 
altogether mk spins turned .1 can break the remaining group of spins aligned t so that 
there is no broken part with less than k elements and no touching of the .1 domains. 
This number is the binomial coefficient formed of the numbers N - 2km + m and m, 
and thus the ground state degeneracy is 

and thereby the residual entropy turns out to be 

I 

m = l  
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whereas the concomitant residual entropy per spin is given by 

U =ln{[l-(2k -l)x]/(l-2kx)}, (14) 

with x being the smallest positive root of the equation 

(1-2kx)2k =x( l -2kx + X ) 2 k - 1 .  (15) 

In the case of the ANNNI chain, k = 2 ,  formulae (12) and (14), together with the 
corresponding equations for x, give U = ln[(l +J5)/2] and U = 0.3223, respectively. 
The first result coincides with the well known residual entropy of the antiferromagnetic 
Ising chain, with the nearest-neighbour interaction, in its critical field (Domb 1960), 
whereas the latter coincides with the residual entropy of the antiferromagnetic Ising 
chain, with interaction of range k = 3, in its maximum critical field (HajdukoviC and 
MiloSeviC 1982). This coincidence is quite general. Indeed, HajdukoviC and 
MiloSeviC (1982) found that an Ising chain with antiferromagnetic interaction of 
range k ,  in the maximum critical field 

k 
H = -2 1 J,, 

j = l  

has the residual entropy 

U = ln((1 -kx)/[l- (k + l)x]}, 

( 1 - k x - x )  - x ( l - k x ) k .  

(17) 

(18) 

where x is the smallest positive root of the equation 
k + l  - 

Comparing formulae (17) and (18) firstly with formulae (12) and (l l) ,  and then with 
formulae (14) and (15), one can state that the residual entropy of the (J1,Jk) chain 
in a zero field is equal to the residual entropy of the antiferromagnetic Ising chain 
with interaction of range (k - 1) in its maximum critical field, whereas the residual 
entropy of the (J1, Jk) chain in the critical field (8) is equal to the residual entropy of 
the antiferromagnetic Ising chain with interaction of range (2k - 1) in its maximum 
critical field. The entropy equalities stay valid even if there appeared non-zero 
intermediate antiferromagnetic interactions {J2, J3, . . . , J k - l }  in the case of the (J1, Jk) 
chain, or similarly if the intermediate antiferromagnetic interactions, i.e. 
{J2,J3,. . . ,Jk-2} and {J2,J3,. . . ,J2k-2}, were set equal to zero in the case of the 
antiferromagnetic Ising chains. The first part of the preceding statement stems from 
the results obtained in the work of Nagase er al (1976), who studied the Ising chain 
with J1 > 0 and J, < 0 (k > j > 2), while the second part follows from the fact that the 
ground state degeneracy of an Ising antiferromagnet, in its maximum critical field 
(16), does not depend on the hierarchy within the sequence {JI, J2, . . . , Jj, . . . , J k }  and 
hence some (or all) of the elements { J 2 , J 3 , .  . . , J k - l }  may vanish (HajdukoviC and 
MiloSeviC 1982). 

Results presented in this letter are of a methodological interest within the theoreti- 
cal foundations of the third law of thermodynamics (see e.g. Aizenmann and Lieb 
1981). However, they also imply that the peculiarities associated with the ANNNI-like 
systems (which have brought about many fascinating experimental and theoretical 
pursuits; see e.g. Rossat-Mignod et a1 (19801, Fisher and Selke (1981), Pokrovsky 
and Uimin (1982)) can be expected in an anisotropic system composed of the antifer- 
romagnetic Ising chains. Such a system, according to the obtained results, may also 
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exhibit a multiphase point, determined by the corresponding critical field and depicted 
as an origin of an infinite number of distinct, spatially modulated, layered magnetic 
phases (Fisher and Selke 1981). The new multiphase point should have an additional 
peculiarity, interesting from the experimental point of view. Namely, it can be switched 
off, or turned on, by varying the magnetic field in the vicinity of its critical value, 

We are grateful to Dr W Selke for his knowledgeable comments made about a 
preliminary form of results reported in this letter. 
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